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Summary. An arbitrary finitely additive probability can be decomposed
uniquely into a convex combination of a countably additive probability and
a purely finitely additive (PFA) one. The coefficient of the PFA probability
is an upper bound on-the extent to which conglomerability may fail in a
finitely additive probability with that decomposition. If the probability is
defined on a o-field, the bound is sharp. Hence, non-conglomerability (or
equivalently non-disintegrability) characterizes finitely as opposed to count-
ably additive probability. Nonetheless, there exists a PFA probability
which is simultaneously conglomerable over an arbitrary finite set of par-
titions.

Neither conglomerability nor non-conglomerability in a given partition
is closed under convex combinations. But the convex combination of PFA
ultrafilter probabilities, each of which cannot be made conglomerable in a
common margin, is singular with respect to any finitely additive probability
that is conglomerable in that margin.

1. Introduction

Kolmogorov's [11] classic treatment of the theory of probability from ‘a
frequency view-point justifies a finitely additive probability. Nonetheless he
assumes a countably additive probability “for expedience”, and nearly all
modern writers in probability have followed him. Similarly deFinetti [7] de-
rives a finitely additive subjective probability from axioms of coherence, al-
though many Bayesians regard only countably additive probabilities as *prop-
er” (Lindley [12, 13]). '

Whether countable additivity is a convenient regularity condition whose
assumption does not change essential results is, then, a reasonable matter to
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explore. In this paper we examine one aspect of finite additivity, namely non-
conglomerability, first noted by deFinetti [6, p.99] some fifty years ago.
Consider a partition n={h;:i<«} of pairwise exclusive and mutually exhaus-
tive sets. If « is an infinite cardinal, it may be that for some event E

k,<P(E|h)=k, forall hen, (L.1)
and yet,
P(Ey<k, or P(E)>k,.

(1.2)

In this case we say P is not conglomerable with respect to .

An example of non-conglomerability (attributed to P. Lévy, see [6, 5.30]) is
as follows. Consider the denumerable set of points {{i, j>: i, j positive integers}.
Let P be a finitely (and not countably) additive probability defined for a field
Z that includes all finite and complements of finite sets of points, subject to
these two constraints:

(i) P((i,j>)=0 for all singletons,

(i) P(Ki,j>]A)=0if A is infinite.
Consider the event E={{i, j): i<}, i.e. E is the region of the first quadrant (in
F) above the line i=j. Now, note that

: P(Eli=k<wy)=1
but
P(E|j=k<wy)=0.

Thus, depending upon the partition (by first or by second coordinate), conglom-
erability fixes the probability of E as 1 or 0. Hence, conglomerability fails for
at least one of these partitions.

In a recent paper Dubins [8] reports that conglomerability (for random
variables) in a partition = is equivalent to “disintegrability™ in 7. As a con-
sequence P is conglomerable in = for all events E just in case:

P(E)= | P(E|h)dP(h), (1.3)

hen

ie. iff P is the “average” of conditional probabilities P(E|h). for hem. We
remind the readers of the definition of integral we use with finitely additive
measures. Following [9]

§ f(h)dP(h)=sup [ g(h)dP(h),

where the supremum is taken over simple g<f. Now g is simple iff it has the
form g= ) a;I, where D is finite. Thence
jeD

{gh)dP(h)="> a;P(h)).
jeD
The principal questions addressed in this paper are these: For an arbitrary

finitely additive probability P (that is not countably additive), is there a
denumerable partition where conglomerability fails for some event? That is,
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does there exist an event E and partition w={h;: i=1,...} such that, for some

n>0,
P(E)—P(E|h)>n? ' (1.4)

Second, what is the Lu.b. of n such that (1.4) holds?

In order to answer these questions, we begin in Sect. 2 with a unique
decomposition of finitely additive probabilities into a convex combination
given in [16]:

P=aP.+fP: a+f=1; o =0, ' (L.5)

where P- is countably additive and F, is purely finitely additive (PFA) (c.f.
[9, p.163]). We then prove that f is an upper bound for all failures of
conglomerability, i.e. the left-hand side of (1.4) is bounded above by B, in all
denumerable partitions.

In Sect.3 we find that if B30, if the range of P is not limited to finitely
many distinct values and if P is defined on a o-field of events, then the upper
bound on the failure of conglomerability, f, must be approached. That is, we
show that for n<p there is an event E and partition 7= {h;(i <w,)} such that
(1.4) holds. Next we consider the case in which P assumes only finitely many
values. We assume that P is defined on the power set, that all conditional
probabilities P(+]*) are specified consistently and satisfy a certain “principle of
conditional coherence”. Then again we show in Theorem 3.3 that the upper
bound on the failure of conglomerability, §, must be approached.

In Sect. 4, we show first, that there exist finitely additive (and not countably
additive) probabilities that, when specified merely unconditionally, can be
extended to conditional probabilities simultaneously conglomerable in any
finite set of margins chosen antecedently. Thus, for this class of finitely additive
distributions, the question of conglomerability in a particular margin is not
determined by the unconditional distributions. Our investigation (in Sect. 4)
into what may occur with respect to conglomerability in a particular margin
shows also that the convex combination of two finitely additive distributions,
each conglomerable in a common margin, may fail to be conglomerable in that
margin. Similarly, the convex combination of two distributions that each fail to
be conglomerable in a common margin may, nonetheless, be conglomerable in
that margin. Hence, neither conglomerability nor non-conglomerability in a
margin is closed under simple convex combinations.

Lastly, in Sect. 5, we consider a question of the connection between non-
conglomerability and strong non-approximability by conglomerable distri-
butions. It follows quickly that all countably additive probabilities are singular
with respect to all PFA ones, and that all continuous distributions are singular
with respect to ultrafilter ones. A distribution cannot be made conglomerable
in a margin if, when specified merely unconditionally, it cannot be extended to
include consistent conditional probabilities that are conglomerable in that
margin. We show that the convex combination of PFA ultrafilter probabili-
ties, each of which cannot be made conglomerable in a common margin, is
singular with respect to all finitely additive probabilities that are conglomer-
able in that margin. '



Since conditioning arguments are so common and so important in all
aspects of probability theory, and its statistical applications, our results lead us
to be curious about the extent to which standard countably-additive probabili-
ty results carry over to the finitely additive case. To the extent that they do
not, the assumption of countable additivity as a regularity condition is not
innocuous.

2. Upper Bound on Failures of Conglomerability

In this section we review some important theorems about finitely additive
probabilities. These theorems, in turn, lead to an upper bound on failures of
conglomerability. The probabilities discussed in this section need only be
defined over a field # of subsets of some space Q. In later sections, we will
require that probabilities be defined over a o-field.

Definition 1.1. A probability P is purely finitely additive (PFA) if the only non-
negative countably additive set function Q which satisfies P= Q=0 is Q=0.

Yosida and Hewitt [16] prove a theorem from which the following follows
trivially.

Theorem 2.1. For every finitely additive probability P defined on a field of
events &, there exist F., a countably additive probability, B,, a PFA probability,
20 and Bz0 such that P=oF.+f B, and %+ f=1. The numbers « and B are
unique, and, if 2.%0, F. is unique. Similarly, if f+0, B, is unique.

In view of Theorem 2.1, for any finitely additive probability P, we will
denote by B(P) the coefficient of the PFA probability P,. A different character-
ization of PFA probabilities than is given in Definition 1.1 proves to be more
useful in proving the theorems of this paper. First /we need the following
definition.

Definition 2.2. A probability P is strongly finitely additive (SFA) if there exists
a partition = {h, h,,...} such that P(h)=0 for every i.

Theorem 2.2. A probability P defined on a field of events & is PFA if and only

if for every >0, there exists a partition n={h, h,,...} such that Z P(h)<e.

i=
Proof. “if” Let Q be a countably additive non-negative set function satisfying
P2Q=0 with Q(Q)=a. For every a>0 there exists a partition as in the

statement of the theorem such that ¢> Z P(h)= z Q(h)=a. Hence a<ze¢ for

11 0 i=1 x

e»ery ¢>0,s0 a=0 and Q=0 implying P is PFA.
“only if” Let P be PFA. Lemma | of [1] shows that there exist countably
many SFA probabilities

P,i=12,... | such that P= Z 2B, and ) x=1
i=1

i=l



K
Let ¢>0 be given and let K be large enough so that Y. 2;>1—e. For each P.
i=1
i=1, ..., K there exists a partition =, as described in Definition 2.2. Let n be the
countable partition consisting of events each of which is the intersection of K
events, one from each of the partitions n;. Set m={h, h,,...}. It follows that
B(h)=0 for all j and for i=1,..., K. Hence

x o x X X x
LPU)=3 ¥ aRly)= 3 a Rhs 2 u<e
j=1 j=1i=K+ i=K+1 j=1 i—,_-K-;-l

and the lemma is proven.
The following corollary to Theorems 2.1 and 2.2 is needed to derive the
upper bound on failures of conglomerability. The proof is trivial and is omit-

ted.
Corollary 2.1. If P is a probability defmed on a field of events and =

={h,, h,,...} is a countable partition, then Z P(h)=1-—pB(P).

i=1
Theorem 2.3. Let P be a probability defined on a field of events and =
={h,, h,,...} be a countable partition such that P(:|h) is defined for every i. If
E is an event such that P(E)y—P(E|h)=b for all i [or such that P(E|h)
—P(E)=b for all i], then b< B(P).

Proof. Since E may be replaced by Ef, we need only prove that P(E)
— P(E|h)=b implies b< S(P). If P(E)—P(E|h;)Zb for all i, then
P(E|h)<P(E)—b, for all i. (2.1)

Multiply both sides of (2.1) by P(h;)=0 and sum over i. /
Z P(E|h;) P(h,)= Z P(Enh,)

=[P(E)—b] Z P(h)=P(E)—b. (2.2)

i=1

By Corollary 2.1, P(E)+ ) P(Enh)z1—pB(P) since {E°, Enh,, Enh,,...} is
i=1
a partition. Adding P(E) to the extremes of (2.2) yields 1 —fB(P)<1—b, hence
b < B(P) and the proof is complete.
Theorem 2.3 states that failures of conglomerability of a finitely additive
probability P cannot exceed S(P). It follows trivially that failures of disintegra-
bility cannot exceed B(P) either. :

3. The Extent to Which Conglomerability Fails

The results of this section pertain mostly to probabilities defined on a o-field of
events..The first lemma gives a construction which is useful in the sequel.



Lemma 3.1. If P is a probability. defined on a o-field # whose range is an
infinite set, then for every £>0, there exists a set A such that P(A)Se and

AziglA,- with A,eF, A;nA;=¢ for i%j and P(4)>0 for all i.

Proof. Since the range of P is infinite there must exist an event Ae% such that
P(4)>0 and P(A)>0. Either 4 or A° (or both) has subsets with infinitely
many distinct values. Let it be A°. Set B; =A and C, =A. Partition B, into B,
=C,U B, where P(C,)>0, P(B,)>0 and B, contains subsets with infinitely
many distinct values. Partition B, into B,=C,UB;, etc.

The procedure above produces a sequence of disjoint events {C,:i
=1,...,0} with P(C,)>0 for all n. Let m>2/e be an integer. Define E.(k)

=Ci_yymsx for k=1,...m, i=1,... o0. Since P(ng1 C,,>=k§lp{i!1Ei(k)},

there must exist a k, such that P{U Ei(ko)} Y. P{E;(ko)}<e&/2. Let n be

x~l

large enough so that Z P{E;(k,)}<e/2. Set A= UE (ko) and A;=E;_, ,(k,)

i=n

for i=1,..., 00, and the lemma is proven.

Theorem 3.1. Let P be a finitely additive probability satisfying:

(i) P is defined on a o-field

(i) f(P)>0

(iii) P assumes more than finitely many values.

Then for every >0, there is an event E and a partition n={h,, i=1,...} such
that P(E)—P(E|h;)> B(P)—e¢ for all i.
Proof. Let >0 be given. Consider the decomposition given by Theorem 2.1,
P=2F.+BF,. Choose n>2/¢ large enough so that 5_/1/2n<e,(4,3) Now use

Lemma 3.1 to find an event 4= U A; with P(A)<fd, A;nA;=0 for i=j, and

0

P(A)>O Vi. Let y= Z P(4,). Since B, is PFA, we can write A= U C; with

i=1 i=1

P, (C;)<d7y, by Theorem 2.2, Let k be large enough so that Z P(C)<dr.

1 i=k+1

M

i k
Let Al = U Ci, Al =A,_  fori=2,3,..., and let {4?:i=1,...} be the sequence
of events CH, i=1, ..., arranged in order of decreasing P. It is clear that

Q= U UA and the A are disjoint. Set E= () A}. Then P(E)=BP,(E)
i=1i= i=1

=f (PD(AC)——._Z PD(C,.)). Now PB,(A)S P(A)/B<, so B(AS)>1—5. We know

k
Y. Py(C)<é. So P(E)= (1 —28)>B—e/2. Notice that

i=1



and

iP(A) ocZPC 2)+[}ZP(A2)<10 +BSy=07

o) i P(Ai‘)/iz P(A)Y=7/(67)=1/0=2n, ie.
i=1 i=1
i P(A})z2n i P(47). | (3.1)

ky
Let k, be the smallest integer such that Y P(A4})=znP(A}). Clearly k, <=
i=1
by (3.1). Also let m, be the smallest integer greater than zero such that

S Pabhz2n Y P4, (32)

i=ki+1 i=myg+1

which is finite since the sum on the right hand side of (3.1) converges and
P(A})>0 for all i.

ki
Define F,=|) 4!, G,={J)4} and h;=FuG,. We claim that
i=1 i=1

_ .
P(F,)2nP(G,). To see this, reason as follows: If P(F))=) P(4;)<2nP(4})

1 1

then by subtracting from (3.1) we have z P(A})=2n Z P(A?) which im-
i=k;+1 i=
plies m, =1, G, =A% and P(F,)2nP(G)).
If P(F,)>2nP(4% then P(F,)>2nP(4}) for all i>1 since the A4} are
arranged by decreasing P value. Let m be the smallest integer =1 such that

P(Fl)§271ZP(Ai2). If m=ow, then P(F,)>2nP(G,)ZnP(G,) trivially. If
i=1

m<co, then by subtraction from (3.1) we get Z P(A})=2n Z P(A}),
: i=k;+1 i=m+1
hence m=m,. So

m-1

2nP(G)<2n Y P(AH=2nP(A2)+2n )y P(A})<2P(F),

 hence nP(G,)< P(F,) in this case also. It now follows that
P(Elh,)=P(G,)/[P(F,)+P(G)]=SP(G,)/P(F)sn"'<¢/2.

So P(E)—P(Elh))zB—¢e/2—¢/2=f—¢.
Now use the fact that (3.2) is just like (3.1) but for the sequences {A}: i=k,
+1,...} and {4}: i=m,;+1,...}. So repeat the above process finding k,>k,

k2 mz

and my,>m,. Set F,= () A}, G,= |J 4}, h,=F,UG,. It follows that (3.2)
i=ki+1 i=ng+1
and (3.3) hold with subscripts 1 replaced by 2, etc. This generates the necessary

partition n={h,:i=1,...}. [



Theorem 3.1 states that f§(P) is the least upper bound on failures of conglom-
erability for a probability P defined on a o-field # and assuming infinitely
many values. It is trivial to see that B(P) is also the least upper bound on
failures of disintegrability under the same conditions. Next we state a result
(Theorem 3.2, Corollary 3.1) that applies to all finitely additive probabilities.
Then we state and prove Theorem 3.3, which shows that S(P) is the least upper
bound on failures of conglomerability for probabilities taking only finitely
many values, as well.

Definition 3.1. An ultrafilter % is a collection of subsets of Q satisfying
(i) if Ae% and A< B, then Be#
(i1) if A, Be# then AnBe#
(iti) for every A, either Ae¥ or A%, but not both.

Definition 3.2. A probability, P, is called an ultrafilter probability with atoms in
an ultrafilter % if VEe#, P(E)=1. It is trivial to see that for every ultrafilter %
there is a unique ultrafilter probability with atoms in Z.

Definition 3.3. A probability P is said to be non-atomic if for every event E and
every £>0, there exist a finite number of disjoint subsets E, ..., E, of E, such
that E= () E; and P(E))<s, i=1,...,n. The following result is proven in [15].
i=1
Theorem 3.2. For ecery finitely additive probability P defined on a field #,
there exists a non-atomic probability Py and at most countably many ultrafilter
probabilities P(1<i<N <o), each with atoms in an ultrafilter ,, such that
: -

N ,
P=}) B where Y v,=1. The ultrafilters U; are distinct, ie. Vi<j,
i=0 i=0
3 Eel;3E¢;. Suppose the 7's are ordered so that 112722 ... The sequence (y,,

0<ig o) is uniquely determined. If 7,40, Fy -is uniquely determined. Suppose

I={i|y;=7y>0}. I is of course a finite set. Then U; is unique up to possible
permutation within the set I.

We call %; the constituent ultrafilters of P. The following corollary to
Theorem 3.2 is trivial and its proof is omitted.

Corollary 3.1. For ecery finitely additive probability P defined on a field #, there
exists a continuous probability By, at most countably many PF A ultrafilter prob-
abilities F;, (1SiSN<oc) and at most countably many ultrafilter probabilities
R; (1= M < %) each countably additive such that

N M
P=3o R+ Z i B+ Z 5jRj’
j=1

i=1

i=1

N M
where ) i+ Y 8;=1, %20 for all i20 and 0;20 for all j=1. Uniqueness for
. j=1
'S, 8's, U;'s and U ;s is similar to that of Theorem 3.2.

In contrast to the case considered earlier in this section, if P assumes only
finitely many values, then there will not exist a partition n={h;:i=1, ..., 0}



Non-Conglomerability of Finitely Additive Probabilities 213

with P(i1)>0 for all i. Hence, in order to find a failure of conglomerability, we
must assume that P(:|h) is defined for events h with P(h)=0. We will assume
further, the following.

Principle of Conditional Coherence. For all pairs of events 4, B such that
AnB=0, O()=P(-|B) is a finitely additive probability and Q(:|A4)
=P(-|AnB).

The principle of conditional coherence applies trivially to events with
positive probability. We assume it also applies to events of zero probability. It
is a simple consequence of this principle that if i, and I, are disjoint and
P(h,|h,uhy)=1/2, then P(h |h;Uh,VA)Z P(h,|hyuh,UA) for all sets A. Du-
bins (1975, sec. 3) proves that for any probability P conditional probabilities
can be defined in such a way that conditional coherence holds.

We are now ready to state the final result of this section.

Theorem 3.3. If P is a finitely additive probability, defined on the power set of a
space Q, with B(P)=p>0 which assumes only finitely many values and satisfies
the principle of conditional coherence, then for every >0, there exists an event E
and a partition n="{h,, h,, ...} with P(E)—P(E|h;)> B(P)—e¢ for all i.

The proof of Theorem 3.3 rests on the following lemma.

Lemma 3.2. Let P be a PFA ultrafilter probability which satisfies the conditional
coherence principle and has atoms in 9. Let h_,¢%. For every ¢>0, there exists
a partition w*=1{h_,, h% h* ..} and an event E, such that P(E)=1 and
P(E\h¥)<eg for all iZ0 and Enh_ =¢.

An outline of the proof of this lemma follows, but full details are given in
the appendix. The idea is to start with a partition {h_,, hy, hy, ...} with P(h;)
=0 for all i and begin grouping together successive h; ($tarting with h,). The
h/s are grouped into finite collections in order that one of two results occurs.
The first is that an event Ee% can be formed by taking the union of a few of
the h; from each collection and the partition n* formed by the unions of the
h;s in each collection satisfies the conclusion of the Lemma. The other result
that might occur is that one finite collection of /s may emerge with special
properties. If this occurs, the special collection is removed from the partition
and the remaining h’s are grouped as before. This process continues until
either the first result occurs or an infinite sequence of special collections is
generated. In this last case an event E and a partition n* can be formed in the
same manner as above, either from the special collections or from the set of
hs which are not in the special collections.

Now the proof of Theorem 3.3 can be given. Since P assumes only finitely
many values, the decomposition of Theorem 3.2 has y,=0 and N <cc. That is

N
P=3 7 P, with P, having atoms in ultrafilter % and the %; are all distinct. It
i=1 .
follows from Corollary 3.1 that if >0, then there are some B, say B, ..., R, for
k
convenience, with B PFA for i=1,...,k and B=) 7, Since %, and %, are
i=1

distinct, there exists an event Ae#, with Ae#,. Either Ae %, or A“€Z,. For



convenience suppose Ae#;. Find BeU, such that BSe%,. Set A'=ANB, A*
=ANBC. Then A*e¥,, A°e¥,, A'e¥, and the three events form a partition.
This process can be repeated to find a finite partition {A,...., 4} such that
A€, i=1,...,k and A;¢%; for i+j. Define, for i=1,..., k h"_l=_U.Aj. It

j¥i
follows that P.(h".,)=0 for i=1, ..., k. Define k new probabilities P* by P*(-|h)
=P(-[h) for all h¢#; and P*(-|h)=P, for he#, It follows that P*=P for
i=1,...,k but P* may differ from P, in the way conditional probabilities are
assigned. Since P satisfies the conditional coherence principle, so do all of the
F*. Apply Lemma 3.2 to the pair (P*, h'_,) for each i to obtain events E,, ..., E,
and partitions {h'_, hi, ...} i=1, ..., k with F*(E)=1, B*(E;| h{)<e for each i,

and E;nh'  =0. Since A= B for i=1,...,k it follows that m={hi:i
j=o

=1,...,k; j=0, ..., 00} forms a partition. Since E.nh' =0, E,nhi=§ for all
s20 and j+i. So _
| P*(E,|h)=0, for s20, j+i. (3.3)

k k kK N k
Write E= () E; so that P(E)= Y P(E)= > Y vBE)ZY =B Write
i=1 i=1 i=1 j=1 i=

. = 1
={h,, h,, ...} where each h;=h; for some s and j>0. Then P(Elh,.)=P(E|hj.)
Kk k
for some s and j. Hence P(E|h)=Y P(E,|k)= ) R*(E,|)=PB*E,|h) by
=1 t=1

t= =
(3.3). Since F*(E|hj)<e, P(E|h)<e for each i. Together with the fact that
P(E)z B, it follows that P(E)—-P(E|h)=p—¢eforalli. []

4. Conglomerability in Particular Margins When P Assumes Only Finitely
Many Values
/
In Sect. 3, Theorem 3.3 we showed for each >0 the existence, under mild
regularity conditions on P (definition on a a-field, satisfying conditional coher-
ence), of a partition n and an event E such that the inequality (1.4) is satisfied
by nearly as much as is allowed by Corollary 2.1, namely B(P)—e. In this
section, we take up a related topic, namely whether conditional probabilities
can be defined so that, for specified partitions, conglomerability holds. That is,
when P is given unconditionally and a Jfinite collection of partitions specified,
can conditional probabilities be defined for P (subject to conditional coher-
ence) so that conglomerability is satisfied in each partition in the collection? In
other words, is P simultaneously conglomerable in each partition in the col-
lection of partitions? Sufficient conditions are given for this in Theorem 4.1,
and Corollary 4.1 establishes the existence of finitely additive (and not count-
ably additive) probabilities meeting these conditions. Then examples are given
to show that the convex combination of two finitely additive probabilities, each
not conglomerable>
conglomerable

able in 7n. Hence neither finitely additive probabilities conglomerable in a
partition =, nor those failing to be conglomerable in 7, constitute convex sets.

. .\ be
In a particular partition n, may <fa'l 0 b > conglomer-
i e
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Definition 4.1. A partition n={h;: i<d=w,} has the minimal order property for
ultrafilter % if there exists an Ae# such that

i<d:|h,nA4|>1}|< 1.

Informally, a partition n has the minimal order property for % if there is a set
A in % for which there is at most one member of = whose mtersectxon ‘with A4
has more than one element.

Theorem 4.1. Let II={n,,n,,...,n,} be a finite set of partitions. Suppose P
takes only finitely many values. Then P is simultaneously conglomerable in all
mell if each of its constitutent ultrafilters satisfies the minimal order property in
each mell. |

Proof. First we state and prove a helpful lemma.

Lemma 4.1. Suppose P is an ultrafilter probability with atoms in %, and suppose
each n;ell satisfies the minimal order property for %. Then P is simultaneously
- conglomerable in all n;ell.

Proof of Lemma 4.1. Choose mA[s (1<j<m) such that 4,e% and
{i<é;:|4;nhi]>1}|<1  for hiem; (1Sj<m).

Let h! be that member of the partition 7, j» unique if it exists, such that
|4; mh’ 1> 1. Since P has atoms in %, either P(h’) 0 or P(hi)=1. Let

A¥ =

J

Aj—h{; if P(h’) O
AJ if not
Now Aj‘e%.

Let A= () A¥. Clearly Ae%, and, for each nell,
j=1
Hi<d: |[AnH]>1} <1

Next, construct conditional probability functions P(-|hj) as follows: Each h
belongs to exactly one of the following sets:
(i) hiell} if [Anhjl=1. In this case, let P(-|h{) be the discrete, countably
additive probability with all its mass concentrated on that element (4 h).
(ii) h’e]’[2 if |[Anhi|>1, and, by construction above, P(h/)=1. In this case
P(-| 1) is determmed by P and the multiplication theorem,

P(~r\h{)=

P(- )=

B(-nhi)=P.

(ili) hjell} if Anhi=@. Then choose one finitely additive probability de-
fined on the power set 2(Q— A), with associated conditional probability func-
tions P(+|Y) for Yej’(Q —A). Then P(-|hj) is given by this conditional proba-
bility.

Finally, for every Ee & and every n;ell, if there is an h eH“ then

P(E)=P(E|A)=P(E|hi)= | P(E|hi)dP(h))

h;{enj



if not, then

P(E)=P(E|A)= [ P(E|R)dP(h))= [ P(E|h)dP(hj). 0

hiell} hien;

Resuming the proof of Theorem 4.1, we remind the reader that by Theorem
3.2, since P takes only finitely many values, P can be written uniquely as

P= Z e b
.- [:l

where each F, is an ultrafilter probability with atoms in ultrafilter «,, which by
hypothesis of the theorem satisfies the minimal order property. Applying the
lemma, we can take P, to be conglomerable in all n;e11, and seek to define
P(+|h)), hien; (1<j<m) so that P is conglomerable in all m;ell.

Note that for each j, there are at most finitely many hiell; such that
P(hd)>0. For these, P(:|hi) is determined by P and the multiplication theorem.
We assume P({l{: P(h§)=0})>0, since otherwise P is already conglomerable in
that n,.

Sh{ce, by hypothesis, each %, (1 £ <r) satisfies the minimal order property

m
in each n;ell, we may choose A, = () 4%, as in Lemma 4.1 where A,e?, and
=1

J
for each n; (1Sjsm)

Hi<d:|A,0h|>1}[L1, hen;.

Since we are considering only those her;3P(h)=0, without loss of generality
we may assume that [4,nh|=<1. For each such h, identify which of the (at
most r) 4, satisfy [4,nN|=1. Let these be 4,,, ooy Ay (g =1), with associated
s ..., /7/,q, and coefficients Ters s Teq- LET /

i1 1)(1('[/7)+---+}'/qP/q('|h)

q

Z Vek
k=1

P(-|h)=

where P,k(-]h)Ais that discrete, countably additive conditional probability func-
tion, provided by Lemma 4.1, for P,.

Note. For all h such that P(h)=0 and (A,nh)=0 (1< <r), then P(+|h) is
given by any one finitely additive probability function defined on

2 (Q—{Ql A,).

Finally, by straightforward arithmetic, P(E)= | P(Elh)ydP(h) Vmell,

hen;

VEe# That is, for any Ee#Z, E belongs to g<r of the #, and for each P,
(1 SOS), nell, } :
F(E)=F(E|A,)= [ E(E|h)dP(h),

hen;

where F(+]h) is defined by Lemma 4.1. [J Theorem 4.1.

N
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Corollary 4.1. Let I[I={n,,...,n,} be a finite set of partitions. There exists a
finitely additive (but not countably additive) probability which is simultaneously
conglomerable over each partition in II.

Proof of Corollary. Let |Q|=w, and let % be an ultrafilter of subsets of Q. By
Theorem 9.6 of [5]. every = satisfies the minimal order property for ultrafilter
 if % is a Ramsey ultrafilter. By Theorem 9.13, ibid., there are 22%distinct
Ramsey ultrafilters on & cardinal @. []

We remind the reader that Theorem 3.3 and Corollary 4.1 do not conflict.
The latter establishes the existence of a probability P"which is simultaneously
conglomerable in an arbitrary finite collection of denumerable partitions. The
former result shows that, subject to conditional coherence, the collection can-
not be extended to include all denumerable partitions unless P is countably
additive.

Example 4.1. The following example (to be found in [6, p. 205] and reported in

[8, p. 92]) illustrates the failure of conglomerability in partition n of the convex

combination of two finitely additive probabilities, each of which is (separately)

conglomerable in . Let the field be the set of (all) subsets of X={a;i=1,2;
{ A

j=1,2,...}. Let F.(a;))= 0 otherwise’ hence F. is countably additive and lives

on the set X, ={a,;: i=1}.

Let Fy(a;)=0 Vi,j and let B (X,)=0. Finally, let P=«F-+fPF, (2 f>0;
a+f=1). Fix n={h;: h;={a,;, a,;}}.

Then P is not conglomerable in n as P(X,)=u« whereas P(X, [h)=1, Vj.
Clearly F. is conglomerable in =, as in F,. (Just set Bylay;th)=1,Vj) A similar
example is reported in [2, Example 3.1]. /

Example 4.2. This example shows that non-conglomerability in a margin is not
closed under simple convex combinations.

1
57 ifi=1
Let P, be P as above. That is, F (a;;)= 0 ifizo 5O that F. (X,)=1. Let

Fp,(a;)=0 Vij and let F, (X;)=0. Choose , f>0; a+f=1 and fix P, =aF,
+BE, . Hence (as shown above), P, is not conglomerable in n={h;: h;

={a,;, a5}
Next, let P, be the mirror image of P, in X, and X,(=X9). That is, define

a;j:::{a" . and define X'={a;;:a;;6X}. Let B(X)=P(X’). Specifically

a,; ifi=2
0 ifi=1 e
Pr(a;)= , ok . Pp,(X,)=0, and P,=uaF;,+ BF,,. Hence, P, likewise is not
— ifi=2
24

conglomerable in 7. Finally, set P*=3P,+4P,. Then P* is conglomerable in .
For example |

r

LP(a,) if i=1 !
P*(q,)=42% 1" = —



so that, for each JP*(a;)hj)=% (i=1, 2). Moreover, P*(X|)=P*(X,)=1. Thus

P*(X,)= | P*(X,|h)dP*(h)="1,

her

Last, we note that the collection of nearly disintegrable measures is convex

[2].

S. Approximation by Probabilities Conglomerable in a Margin

A question left open by the previous work is whether, even though finitely
additive probabilities non-congomerable in a particular margin © exist, they
can be approximated well by distributions that are conglomerable in that
margin. The result of this section is that in one sense, at least, they cannot.

Definition 5.1. Two finitely additive probabilities P, and P, are singular P, LP if
for every >0, 3E€ % such that |P(E)—P,(E)|>1—e¢.

Thus P, and P, are singular if there are sets E on which they differ by
nearly as much as possible. '

Definition 5.2. A finitely additive probability P defined only unconditionally,

cannot be made conglomerable in n={h,, ..} if, for every set of conditional -

probabilities consistent with P, {P(*|h), hen} there is an Ee& such that, for

some ¢>0), ‘ ’
|P(E)— | P(E|h)dP(h)|>e.

her

By saying that P(-|h) is consistent with P, we mean that P satisfies the
principle of conditional coherence (see Sect.3) when extended to include
P(:|h). /
Section 4 shows that if P takes only finitely many’ values and cannot be
made conglomerable in #, then at least one of its constituents lacks the
minimal order property.

Examples of distributions P that cannot be made conglomerable in particu-
lar partitions r are given in [8, Sect. 2] and [14]. Now we can state

Theorem5.1. Let P be a ( finite or countable) corvex combination of PFA
ultrafilter probabilities and suppose that each cannot be made conglomerable in
some partition n. Then P is singular with respect to any probability P’ that is
conglomerable in x.

We begin the proof by reminding the reader of several elementary facts
about singularity and absolute continuity, which we state for completeness.

Lemma 5.1. [16] Every PFA probability B, is singular with respect to every
countably additive probability P.. |
Lemma 5.2. [4] Every continuous probability Py is singular with reapect to every

probability P, that can be written as a ( finite or infinite) convex combination of
ultrafilter probabilities. .



xXk

Lemma 5.3. Let P= Z 7:B, Y. 7;=1,and QLP, for all i. Then Q LP.
’ i=1 i=1

The proof is simple and is omitted.

Lemma 5.4. Suppose that P is an ultrafilter probability with atoms in %. Suppose
that P* is conglomerable in r, is not singular with respect to P, and satisfies

P*= [ P*(-|h)dP(h).

hen
Then P is conglomerable in 7.

Proof. Decompose P* as follows:

Pr—a* Rr (1~ ¥ 75 B2,
£=0
where B¥ is cduntably additive, Py is PFA and nonatomic, and for /=1, B* is
PFA and an ultrafilter probability with atoms in %}. (%} %}, if £+¢'). Also
Y y¥=1. Since, by assumption, P and P* are not singular, there is an ¢>0
(=0

such that sup|P(E)—P*(E)|<1—e. (5.1)
E

Using Lemmas 5.1, 5.2, and 5.3, we have P.L Z y¥ B¥. Again, using Lemma 5.3
l=1

and the fact that ultrafilter probabilities are singular or identical, we have P
=P} for some /=1, where (1—«*)yf=e. Without loss of generality we take
this /=1. Next we use the decomposition Theorems 2.1 and 3.2 on each
conditional probability in the set {P*(-|h;): h,en}. Thus, for each hemn, we
write '

P*(-|h)=of PE(- Ih)+(1—a*)2 vie Pie(t ),

where P¥(-|h;) is countably additive, P¥(-|h;) is PFA and nonatomic, P%(:|h))

(/21) is a PFA ultrafilter probability with atoms in %}, and where Y vE=1,
(=0
V2 ee, (£21), for all i

Claim. For each h;en one may choose one conditional probability, say P#%(-|h,)
such that
= [ P5(|h)dP(h).

h.-en:

We show the claim indirectly. First, choose 4 so that ¢>/>0. Then partition «
. 1 1
into (at most) E_7+1 disjoint sets R; (j=0, e ;:_}—> where R;={h;: P*(:|h,)
has exactly j PFA ultrafilter probabilities with coefficients greéter than ¢—4}.
Observe that A*(R))=0 for all but one value of j, say F*(R;

Suppose, first, J#O Consider the j' selections {P3(- |h) h eR Y E=1,...,J.
Assume the claim is false. Then P*(*)+ | B}(-|h)dP(h) for {-1 . But

hieR;

M



since each of these j* distributions, | P¥(-|h,) dP(h;) (/=1,...,j), is a PFA
hieR ;-

ultrafilter probability mth atoms in one ultrafilter, there exist j’ sets E., ..., E;.,
each with P*¥(E,)=1 (/=1,...,}") and where

[ PYE,|h)dP(h)=0 for ¢=1,...,].
hieR j

Let E'= ﬂ E,. Then P¥(E')=1 yet

| PXEI|h)AP(h)=0 for f=1,...,]"

hieR .

Moreover, for each (unrestricted) selection of conditional, ultrafilter probabili-
ties {B}(-|h): I €R; and 1</,<j'} (of which there are 2% selections if j'> 1),

.f F7(E"| h;)dP(h)=0.
h(ER}"
[This follows since, if there is a selection where

| Bi(E'|h)dP(h)=1 (1=¢.<)),

hiER i

this selection is one of the j/ distributions on a subset R, SR, where P*(R})
=1. That is, for one of the j' dlstrlbutlons (for one value of £)

.[ Pi?.-(.“zi)dp(hi): j B?('Ihi)dp(hi):

hiER'. h,-eR;.,

where R}, SR; and P*(R})=1. But, for each of the J' distributions and for each
R, SR, with P*(R )=1, | B¥(E|h)dP(h)=0.]
hieR -

: /
Let ny= {Iz h, eR and P"(E’lh) 0 for £=1, ...,j.} Then P¥(mg)=1. If j’
=0, let 7y =R, :
Thus, there exists an E, PF(E)=1, yet for every hieny PE(E|h)=0 for all /
such that (1 —a*) 7% >¢g— .

For each hen, partition h, into the biggest integer J < disjoint sets /1,

e— /.
(k=1,...,J), such that P*(Enhy|h)<e—/. Consider the J disjoint sets E;,
= { (Emlz,k) (k=1,...,J). P¥(E;)=0 for all but one value of k. Without loss

hieng
of generality, let P*(E})=1.
However,

P*(E))= [ P*(E}|h)dP(h)

hiexn
= [ P*(Ej|h)dP(h)= | P*(Enh,llh)dP(h)<a 2.
h.Eito h.éﬂo

Thus, (PHE}) = ~P*(E}))>1—=¢ in contradiction with the initial assumptions.
This established the claim.



Now, since P¥=P, P is conglomerable in = using the set of conditional
probabilities {P} (| h;): h;en} provided by the claim. [

Lemma 5.5. Suppose P’ is conglomerable in m, i.e.

P'= [ P'(-|R)dP'(h),
hern

and let
Pt = f P'(-|h)dP(h).

hen
Suppose sup|P(E)-—P'(E)I <1 —e¢ for some ¢>0.
Then sup |P(E)~P* (BN S 1~
Proof. If not, there is an E'sP(E')=1 and a set
| S'={hen: P'(E|h)<e—38} (5>0),
where P(S)=1. But then
P(EnS)= | P(EnS|h)dP'(h+ | P(E'NS|h)dP'(h)

heS’ heS’c
= [ P(EnS|h)dP' (H)+0se—0.
heS’

But P(E'nS’)=1, so P(E'nS’)—P'(E'nS’)>1—¢, a contradiction. [i

Lemma 5.6. Let P be a PFA ultrafilter probability with atoms in %, and suppose
P cannot be made conglomerable in n. Then P is singular with respect to every
P’ that is conglomerable in m.

Proof-Suppose the contrary,-that is, that P’ is congldmerable in z .and not.
singular with respect to P. Then Lemma 5.5 applies, and shows that P is not
singular with respect to P. Let h'en. Then P'(W'|h)=0if h#h" and 1 if h=H.
Hence
’ P*(W)=P(") for all Wen.

Thus taking P*(-|h)=P'(+|h), P* is conglomerable in 7, and satisfies

P*= [ P*(-|h)dP(h).

hern

Consequently P* satisfies the requirements for P* in Lemma 54, so P is
conglomerable in m, which contradicts the assumption. []

The proof of Theorem 5.1 is now immediate from Lemmas 5.6 and 5.3. (1

Last we note that Lemma 5.6 may fail for P which are PFA but nonatomic.
For instance, let P, of Example 4.1 be nonatomic in addition to the stated
conditions. Then P retains its non-conglomerability in . However, as shown in
[8, Sect. 2, p. 95], since = is simple the finitely additive probabilities which are
conglomerable in n are norm-dense. That is, P is approximable by a sequence
of finitely additive probabilities, each conglomerable in 7.



In response to a question we posed, both a refere and W. Sudderth point
out that a consequence of (1.2) in [14] is the existence of a PFA, continuous
probability P" and a partition © in which P’ cannot be made conglomerable,
but where P’ is not singular with respect to a P* which is conglomerable in =

yet where
sup |P'(X)—P*(X)|20.5
X

7. Conclusion

The combination of Theorem 2.3, Theorem 3.1, Theorem 3.3 and the regularity
condition that P is defined on a ¢-field, shows that for every >0, there exist
partitions = and events E such that P fails to be conglomerable in E with
respect to m by as much as possible, that is, by as much as P fails to be
countably additive, minus e. Should we be concerned about the regularity
condition? A simple application of the Hahn-Banach Theorem (see [3]) shows
that every finitely additive probability defined on a field can be extended
(perhaps in many ways) to a o-field, and in fact, to the power set. Consequently
our result says that for a finitely additive probability defined on a field, every
extension to a o-field must fail conglomerability by no more than our bound.
The only way to escape our conclusion, then, is to refuse to extend the finitely
additive probability to a o-field. Furthermore, there exist finitely additive
probabilities defined on fields which are not ¢-fields, but for which the con-
clusion to Theorem 3.1 is true. For such probabilities, maximal failure of
conglomerability is inescapable.

Failure of conglomerability, then, rather than being an aberration is typical
of finitely additive probabilities that are not countably additive. We believe
that this has important statistical consequences which we discuss in [10].

/
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Appendix. Proof of Lemma 3.2.

The proof of Lemma 3.2, as outlined in Sect. 3, requires two other lemmas
which are stated and proven first. All of the results of this appendix apply to a
PFA ultrafilter P (satisfying the principle of conditional coherence), and whose
atoms are in an ultrafilter % of subsets of a space Q.

Lemma A.1. Let n={h_, hy, h,,...} be a partition such that P(h;)=0 for all i.

i

Let G, be the union of finitely many h,, say G,= | % with each ak=h, for
j=1

some i, for k=1,...,00. Suppose the G, are disjoint, and define G,

= (kU Gk) \h_;. Assume G,¢7%. Suppose that P(ajile) is maximized over j at
= 1 /

exactly g values of j for each k>1. Then Z={h_,, Gy, G,,...} is a partition,
and there exists an event E such that P(E)=1, Enh_,=0, and P(E|G)=1/q
for all i.

Proof. It is clear that o/ is a partition. Let X equal j times the indicator of
whether a% occurs. Conditional on G, X is a random variable taking one of
the values 1,...,n, for k>1. Let my (i) be the conditional i/q quantile of X given
Gy for k=1,2,...,i=1,...,q. Define m(0)=1 and m,(q+1)=n,. Set

o mli+ 1)1 o
C;= U U af, i=0,...,q and D;,= U ak i=0,...,q+1.
k=1

i my(i)*
k=1 jemgl)+1

Each event C; is defined so that P(C;|G,)<1/q. Each D, is the union of one aji

for each k. So for each k, P(DiIGk):-P(ajIle) for some j. Since P(ajfle) is

maximized at exactly q values of j, P(D;|Gy)=1/q for all i, k. 1t is easy to see
q+ 1

q
that 0=h_, UG () D)y (U C.)- Since h_,¢% and Goe, it must be
i=0

i=0
that either one of the C, or one of the D; is in %. Set one such event equal to
E and note that Enh_, = to finish the proof.
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Lemma A.2. Let n={h_,, hy, h,,...} be a partition with P(h,)=0 for all i. Let

N

G, be the union of finitely many h;, say G, = .Ul aj with each ak=h; for some i,
J=

fo'e) c
Jor k=1,...,00. Suppose the G, are disjoint, and define G0=(‘U Gk) \h_,.
c = 1
Assume Go¢¥. Suppose that P(a%|G,) is maximized at S, distinct values of j for
each k=1, with 1 S, <n. Suppose in addition that P(af|afua} )<} whenever t> k
and_j maximizes P[a}|G,] (or>% whenever t>k and i maximizes P[af|G,]).

Then for every >0, there exist a partition n*={h_,, h¥, ht,...} and an event E
such that P(E)y=1, Enh_,; =0, and P(E|h¥)<e for all i.

Proof. It is clear that w/={h_,,G,, G,,...} is a partition. Let q>1/e and
construct events C,,...,C, and D,...,D ., exactly as in the proof of
Lemma A.l. Each C, has P(C,|G,)<1/q for all k. If one of the C.e%, the proof

is complete. Assume then that'Der7/ for some x. Write D = () b,, where
k=1

b,=al, (X)=G, in the notation of Lemma A.l. Define Hy=|) bysyy;4; for
=0

i=1,...,q+1. The H, are disjoint and their union is D, so exactly one of them
is in %, say H e%.
Consider first the case in which P(af|afua’)<1/2 whenever t>k and j

q
maximizes P(a}|G,). Define h¥, =.U0 G+ 1yj+s+i for j=0,1,.... Set E=H_ and
=
notice that Er\h}"sz(qH”ﬂ. For each pair (i, j), let C; ;=a{#*Vi*s*i for any
m which maximizes P(a*VJ*s*{G .. ) Tt follows that

P(b(q+1”+slb(q+”j+su C;)<1/2 fori=1,...,qand all j.

Since the C;; are disjoint and each C;.iSh},,, it follows from conditional

s—1
coherence that P(E[h¥, )<1/g<e for j=0,1,.... Let h¢= ) G, and notice
i=0

Enh_,=¢ to finish the proof.
Next let P(af|afual)>1/2 whenever t>k and i maximizes P(a*|G,). Define

q
hj‘=Uo Gs1yjes+s for j=1,2,.... Set E=H\b, so that P(E)=1 also. Notice
that Enlf=b, ) ;.. For each pair (i, j), let C; ;=a*Vi*s~i for any m which
maximizes P(a, " =1 G L)oo ) Tt follows that
P(b(q+“j+slb(q+“j+su C;,)<1/2 fori=1,...,qand allj.

Since C;; are disjoint and each C 5, iShfs, it follows from conditional
coherence that P(E|h¥)<1/g<e for j=1,2,.... Let h;')‘='UO G; and notice
Enh_,=¢ to finish the proof.

Proof of Lemma 3.2. Since P is a PFA ultrafilter probability, there exists a
partition n={h_, h,, hy,...} such that P(h,)=0 for all i, with h_, any event as
specified in the statement of the lemma, ie, h_,¢%. Let g>1/e. Construct a




sequence of partitions {r!}> | as follows. First set k=0, k*=q+1, and n=1.
q

These will be indices to make the notation simpler. Define H (1)={]) h;, G,(1)
i=1

=ho, and m,={h_,, Go(l),...,G,(1), H,(1), I, hyu,,...}. To form partition
M., 1, consider two cases.
Case 1) max P[h;|H,(1)] occurs for at most q—1 values of i. In this case

set H,, ((D=H,()Oh, m, i ={h_,, Gy(1),...,G,(1), H, (1), heyy, ..}, n=n
+1, and k*=Lk*+1. '
Case 2) max P [h;| H (1)] occurs for exactly g values of i. In this case set
‘ K*+gq—1

Oera()=H,(1), H,, ;D= () h, =}, ={Go(l),..., Gerr(1), H,\ (1),

i=k* .
hk*+q» b n=n+1, k*=k*+q and k=k+1. It follows from conditional coher-
ence that at each step, either case 1 or case 2 will apply.

Continue the above process, generating the desired sequence {m }> , with
the properties that if G,(1)ex! then G;(l)en,, for all m>n, that G;(1) is the
union of finitely many h,, and that P[h;|G(1)] is maximized at exactly g
values of j for all i>1. The sequence also has the property that if there are
only finitely many G;(1)," then there exists n* such that for all m>n*,

P[h;|H,(1)] is maximized for at most q—1 values of i, say

J.={i (1), ..., 1. (t,)}

with 1, <q. If (1) <j<i,(s)&j¢J,, then P[hjlhjuh,.m(s) i,(8)]<1/2 for all s.
There are now three cases to consider.

Case I) There are infinitely many G,(1). Set G;=G,(1), i=0,1,..., and apply
Lemma A.l to complete the proof.

Case II) There are only finitely many G,(1) and there are infinitely many
distinct sets J,. For each m>n* H, . ,(1)=H,(1)UHa.; hence, by conditional
coherence either InSJ ey or J,nJ, . = and Jwe1={k*}. Note also that if
JuOJ,=¢ with n>m, then for all 1eJ,, jed,, i<j. It follows, then, that there
are infinitely many disjoint J,, with m>n* Rename them Ly, L,,... with L,
={i(1), . i) Ji(s)<ji(r) for s<t, s, <q for all i, and ji(s)<j,(¢) for all s, ¢ if
i<k. Then Plhlhyoh, 1<1/2 for all s and Ji()=Si<j,(1). Define G,

Ji

Jes1(1)—1 Jul)y—1
= {J hfor k=1,2,.... With Go= |) Mh¢%, we can apply Lemma A2
i=Jx(1) i=0

to finish the proof,
Case III) There are finitely many G,(1), say ny, and there are only finitely
many distinct sets J,. It follows that the last such Jn» call it J' has the

property that for all h such that i¢J', i1, and ke (] G (1);
. j=1
P[h,.lh,.uhj]<1/2 for all jeJ! Let P, (*) be P(+) restricted to S\ U h; and let
ieJ!

my=a\{h: ieJ'}={h_,, h,, hi, iy ...} Perform the construction (as above) of
partitions {n2}> beginning with A and my. That is Go(2)=hgy, k=0, k*=gq

+1, n=1, H,(2)= ( b mi={h_1, Go@)..., G2 H,(2), h,,.,...} etc. Stop
j=1
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this procedure if ever case I or case II prevails for some sequence {n}> ,. Set

he=hyu U \J h;, and apply Lemma A.l for case I or A.2 for case 1L If

i=1 jeJi
neither case I nor case Il prevails, then a sequence of sets J',J%, ... has been
generated,” with the property that P[h]h; uh]<1/2 if ieJ®, ]EJ‘ for t<s.
Because the procedure which generates {n"+l 5 >, is identical to that which
produces {n¥}2 | up to the step at which the latter encounters the first ieJ¥, at
which time all G j(k) have already been formed, it follows that G;(k)=G;(k+1)
for i=0,...,n, and there may be additionally G, ,,(k+1),..., (k+ 1) If

U

to finish the proof. If A%, then note that A° consists of h_,, all h; with
ie U Ji=B, and all other I;& G (k) for any j or k at all. These last h; have the

n;”

=Ae%, order the G;(k) and apply Lemma A.1.

i Cr

property that P(l;|h;0h;)<1/2 for all jeB. Number all such h; as he,,...,h

"N

with N=co possible. Deﬁne G, —(U h)uh,, for k=1,2,. Lemma A2 now

ieJk
applies and the proof is complete.



